琴日係 Instagram Story 道問左一條問題:
唔知各位同學識唔識計呢?
其實,題目既 expression 可以寫成
而呢兩個 square root 正正就係 distance formula,代表某點 (x, y) 同 (0, 0) 之間既 distance 同埋 (x, y) 同 (5, -12) 之間既 distance 既總和。
所以呢題問題可以轉化成為 minimizing the sum of the distance of a point (x, y) to (0, 0) and to (5, -12)。我地畫番個圖就會見到以下既樣:
係個圖裡面,大家會見到 C 係 AB 上面既其中一點,所以 AD + BD ≥ AB (by triangle inequality) = AC + BC,所以無論 D 係成個 plane 既邊一個位置都好,(AD + BD) 都唔會短過 (AC + BC),所以堂 D 呢點移到去 C 既時候,(AD + BD) 就已經 minimize 左,所以個 minimum value 就係同 (AC + BC) 一樣,亦即 AB 既長度 13。
所以,Final answer 就係 13 喇!
P.S. 1:好似冇乜人答到啊,要繼續努力啊!!!
P.S. 2:計到呢題既同學可以試下計呢題:Minimize [sqrt(x^2 + y^2) + sqrt(x^2 + y^2 - 10x + 24y + 169) + sqrt(x^2 + y^2 - 42x + 441)] ~~~
港大數學系 | 專補 DSE 數學(Core / M1 / M2)| 2018 DSE 超過 40% 學生考取 5* 或以上,超過 65% 學生考取 5 或以上(只計算出席超過四堂常規課程的學生)
2019年3月9日星期六
2019年3月4日星期一
DSE Further Mathematics Curriculum Proposal Part 2
今次我地就正式進入 Foundation Area 喇!
Foundation Area 既第一個 Topic 係 More about functions,內容主要係 M2 課程現時有既 Odd and even functions 同埋 CE Additional Mathematics 既 Absolute values 既部分。
係現行既 M1 同埋 M2 既課程裡面,absolute values 只係會係 integration 突然出現,現後就會話「將所有負數變成正數」就得,但連 absolute values 本身既 formal definition 同 meaning 都唔知,咁樣之後遇上其他問題既時候(比如 Learning Unit 15 既 Analytic geometry 及 Algebra module 裡面 Learning Unit 18 既 Vectors)就會不知所措,所以係整個課程開首就加上關於 absolute values 既內容以令整個課程更為完整及更有系統。
不過,此 proposed syllabus 並未有包括有關 absolute values 既 inequalities,因為呢類 inequalities 同其他課既既內容未有太大關連。
呢個部分同現行 M2 既課程相若,但加左有關 inequalities 既 statements,增加有關 proving statements related to inequalities 可以令同學對 inequalities 既了解加深(因為呢個世界好多時時候見到既都唔係等式),亦都可以增加有關 logic 既訓練(而亦不需要到達舊制 AL PMaths Inequalities 既難度),為日後既課題作好準備。
下次就到講兩個關於 Polynomials and rational functions 既 learning units - The binomial theorem 同埋 More about rational functions 喇!
Foundation Area 既第一個 Topic 係 More about functions,內容主要係 M2 課程現時有既 Odd and even functions 同埋 CE Additional Mathematics 既 Absolute values 既部分。
Learning Unit 1 – More about functions
Teaching time: 5 hours
Learning
objective
|
Remarks
|
1.1 Understand the concept of odd and even functions
1.2 Understand the definition of absolute values
1.3 Solve equations involving absolute values
1.4 Sketch simple graphs involving absolute values
|
The concept that |x - y| represents the
distance between x and y should be introduced.
Examples include y = |x + 1| + 2, y = |x + 2| - |x| and y = x|x| + 2x.
Students also need to learn to sketch the graphs of y = f(|x|) and y = |f(x)| from the graph of y = f(x).
|
係現行既 M1 同埋 M2 既課程裡面,absolute values 只係會係 integration 突然出現,現後就會話「將所有負數變成正數」就得,但連 absolute values 本身既 formal definition 同 meaning 都唔知,咁樣之後遇上其他問題既時候(比如 Learning Unit 15 既 Analytic geometry 及 Algebra module 裡面 Learning Unit 18 既 Vectors)就會不知所措,所以係整個課程開首就加上關於 absolute values 既內容以令整個課程更為完整及更有系統。
不過,此 proposed syllabus 並未有包括有關 absolute values 既 inequalities,因為呢類 inequalities 同其他課既既內容未有太大關連。
Learning Unit 2 – The principle of
Mathematical Induction
Teaching time: 5 hours
Learning
objective
|
Remarks
|
2.1 Understand the principle of mathematical induction
|
Only the First Principle of Mathematical
Induction is required.
Applications to proving propositions
related to the summation of a finite sequence and inequalities are included.
Proving propositions involving
divisibility is not required.
|
呢個部分同現行 M2 既課程相若,但加左有關 inequalities 既 statements,增加有關 proving statements related to inequalities 可以令同學對 inequalities 既了解加深(因為呢個世界好多時時候見到既都唔係等式),亦都可以增加有關 logic 既訓練(而亦不需要到達舊制 AL PMaths Inequalities 既難度),為日後既課題作好準備。
下次就到講兩個關於 Polynomials and rational functions 既 learning units - The binomial theorem 同埋 More about rational functions 喇!
訂閱:
文章 (Atom)