2019年11月6日星期三

2020 DSE Maths / M1 / M2 Mock Examination

2020 DSE Maths / M1 / M2 Mock Exam 黎喇!!!

今年既 mock exam 同上年一樣,都係會係九展舉行!

全部考試模式均與真實 DSE 一樣,務求令各位同學可以真正體驗 DSE 既考試氣氛同埋睇下自己係 DSE 數學 / M1 / M2 中既不足之處,從而加以改善。


數學必修部分(Mathematics Compulsory Part)
日期:    2019 年 12 月 27 (星期五)
時間:    08:45 – 13:00(卷一:09:00 – 11:15;卷二:11:45 – 13:00
地點:    九龍灣國際展貿中心

註:        卷一設有兩個版本選擇,Jacky Sir 建議目標為 或以下的同學可選 Version 1,而目標為5* 5** 的同學可選 Version 2,兩個版本的分數會以 Paper 2 的分數調節。

註:        模擬考試中最高分的同學可獲 $150書券;第二高分的同學可獲 $100書券;第三高分的同學可獲 $50書券。

數學延部分(Mathematics Extended Part (Modules 1 & 2))
日期:    20191231(星期二)
時間:    14:15 – 17:00(考試時間:14:30 – 17:00
地點:    九龍灣國際展貿中心

註:        模擬考試中最高分的同學可獲 $100書券;第二高分的同學可獲 $50書券。

用表:

1. 一人報考兩科則視作兩人處理。
2. 連同一位 Jacky Sir 學生可享有額外優惠,詳情請參閱 Jacky Sir 學生的團體報名表格

人數
1115日或之前 Early Bird 八折優惠
正價
不購買 2019 DSE Mock Exam Set
購買 2019 DSE Mock Exam Set
不購買2019 DSE Mock Exam Set
購買 2019 DSE Mock Exam Set
1
$232
$320
$290
$400
2
$216
$304
$270
$380
3
$200
$280
$250
$350
4
$184
$256
$230
$320
5
$168
$232
$210
$290
6 – 10
$144
$208
$180
$260
11 – 20
$120
$184
$150
$230
> 20
$96
$160
$120
$200

歷屆 Maths / M1 / M2 Mock Examinations



2019 DSE Maths / M1 / M2 Mock Examination


2018 DSE Maths / M1 / M2 Mock Examination


2019 DSE Maths / M1 / M2 Mock Examination Set

如有任何查詢,可以以 Whatsapp 聯絡 Jacky Sir:67093450。

2019年8月9日星期五

2019 M2 Q9 只用 Core 方法做既話要點做呢?

原來,2019 M2 卷既 Q9 竟然可以只用 Core 方法做到架,而且考核既知識同 2019 Maths Core Paper I Q19 既差唔多,都係 Quaratics、Transformation of graphs、Coordinate geometry、Mensuration 等,就等我地睇下點做啦!

(a)

Note that $y=\frac{1}{3}\sqrt{12-x^{2}}$ can give $x^{2}+9y^{2}=12$.
On $\Gamma$, when $x=3$, $y=\frac{1}{\sqrt{3}}$.
Therefore, let $y-\frac{1}{\sqrt{3}}=m(x-3)$ be the equation of $L$, where $m$ is the slope of $L$, i.e. $y=m(x-3)+\frac{1}{\sqrt{3}}$.
Then, we have $x^{2}+9\left[m(x-3)+\frac{1}{\sqrt{3}}\right]^2=12$, which gives $\left(9m^{2}+1\right)x^{2}-\left(54m^{2}-6\sqrt{3}m\right)x+\left(81m^{2}-18\sqrt{3}m-9\right)=0$.
Since $L$ is a tangent to $\Gamma$, we know that in the above equation, we know that in the above equation, $\Delta=0$, implying $\left[-\left(54m^{2}-6\sqrt{3}m\right)\right]^{2}-4\left(9m^{2}+1\right) \left(81m^{2}-18\sqrt{3}m-9\right)=0$ so $3m^{2}+2\sqrt{3}+1=0$. Hence, $\left(\sqrt{3}m+1\right)^{2}=0$ and then $m=\frac{1}{\sqrt{3}}$.
Hence, the equation of $L$ is $y-\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}}(x-3)$, i.e. $x+\sqrt{3}y-4=0$.

(b)(i)

Note that $y=\sqrt{4-x^{2}}$ gives $x^{2}+y^{2}=4$.
Substitute $y=-\frac{1}{\sqrt{3}}(x-3)+\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}x+\frac{4}{\sqrt{3}}$ into the above equation, we have $x^{2}+\left(-\frac{1}{\sqrt{3}}x+\frac{4}{\sqrt{3}}\right)^{2}=4$, which implies that $(x-1)^{2}=0$. Hence, $x=1$.
Also, since $1$ is a double root of the equation, we know that $L$ really touches $C$ at $x=1$.
On $C$, when $x=1$, $y=\sqrt{3}$ so the required coordinates are $\left(1,\sqrt{3}\right)$.

(b)(ii)
By solving $x^{2}+9y^{2}=12$ and $x^{2}+y^{2}=4$, we know that $x^{2}=3$ and since $x>0$, we have $x=\sqrt{3}$. Moreover, since $y=\sqrt{4-x^{2}}\geq 0$, we know that $y=1$.
Hence, the required coordinates are $\left(\sqrt{3},1\right)$.

(b)(iii)
Note that the $C$ is in fact a quarter of a circle with centre $(0,0)$ and radius $2$.
Moreover, note that the graph of $y=\sqrt{12-x^{2}}$, where $x\in\left(0,2\sqrt{3}\right)$, denoted by $C'$, is a quarter of a circle with centre $(0,0)$ and radius $2\sqrt{3}$ and this graph can be reduced along the $y$-axis to $\frac{1}{3}$ of the original one to the curve $\Gamma$.

Then, we can use the filling method to find the required area.
Let $O$ be the origin, $P$ be the point $\left(3,\frac{1}{\sqrt{3}}\right)$, $Q$ be the point $\left(1,\sqrt{3}\right)$ and $R$ be the point $\left(\sqrt{3},1\right)$.

First, the area of $\triangle OPQ$ is $(3-0)\left(\sqrt{3}-0\right)-\frac{1}{2}(1-0)\left(\sqrt{3}-0\right)-\frac{1}{2}(3-0)\left(\frac{1}{\sqrt{3}}-0\right)-\frac{1}{2}(3-1)\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) = \frac{4}{3}\sqrt{3}$.

Second, note that if $\alpha$ is the angle between $OQ$ and the $x$-axis, then $\tan\alpha=\frac{\sqrt{3}}{1}$ so $\alpha = 60^{\circ}$ and if $\beta$ is the angle between $OR$ and the $x$-axis, then $\tan\beta=\frac{1}{\sqrt{3}}$ so $\beta=30^{\circ}$ so $\angle QOR=60^{\circ}-30^{\circ}=30^{\circ}$. As a result, the area of the circular sector $OQR$ of $C$ can be given by $\pi (2)^{2}\times\frac{30^{\circ}}{360^{\circ}}=\frac{\pi}{3}$.

Third, note that the region bounded by $\Gamma$, $OP$ and $OR$ can be obtained by reducing a circular sector of the $C'$ along the $y$-axis to $\frac{1}{3}$ of the original one so the area of the former is $\frac{1}{3}$ of the latter. Before the reduction, the coordinates of $P$ and $R$ are $\left(3,\sqrt{3}\right)$ and $\left(\sqrt{3},3\right)$ respectively, denoted by $P'$ and $R'$ respectively. Hence, if $\gamma$ is the angle between $OP'$ and the $x$-axis, then $\tan\gamma=\frac{\sqrt{3}}{3}$ so $\gamma=30^{\circ}$ whereas if $\delta$ is the angle between $OR'$ and the $x$-axis, then $\tan\delta=\frac{3}{\sqrt{3}}$ so $\delta=60^{\circ}$. Hence, $\angle P'OR'=60^{\circ}-30^{\circ}=30^{\circ}$. As a result, the area of this region can be found by $\pi \left(2\sqrt{3}\right)^{2} \times \frac{30^{\circ}}{360^{\circ}} \times \frac{1}{3} = \frac{\pi}{3}$.

Consequently, the required area is $\frac{4}{3}\sqrt{3}-\frac{\pi}{3}-\frac{\pi}{3}=\frac{4}{3}\sqrt{3}-\frac{2\pi}{3}$.

2019年6月9日星期日

Parabola (拋物線) 是甚麼?

【雖然以下既內容係 out of syllabus,但其實中間應用既只係將一d within syllabus 既知識拓展多少少,Jacky Sir 本人中二/三都有學呢d,所以大家高中生應該都冇問題既~ 即管試下睇下吧~~~】

係 Maths Core 我地成日都會講 parabola,但究竟 parabola 係咩黎既呢?我地經常話 $y=ax^{2}+bx+c$ (where $a$, $b$ and $c$ are real constants with $a\neq 0$ 既 graph 係一條 parabola,但…… 其實我地開口埋口講既 parabola 又係咩黎? 其實數學裡面有一種 curve 叫做 conic sections,即係係一個 double infinite right circular cone 用一塊 plane 黎 cut 出黎既 curve,就好似下圖咁:


Figure 1: A figure showing different types of conic sections
[Source:  Calculus by Douglas F. Riddle, Wadsworth, Inc. 1984.]

當中最後一個 case 就係個 plane 岩岩好 touch 到個 cone 係一條 straight line(下右一)上面,而將呢個 plane translate outward 少少就會出 parabola(上右一)喇!當然,我地 formal d 講既話,就會係個 plane 同 vertical plane 形成既角同個 cone 既 semi-vertex angle 係 equal(semi-vertex angle 即係個 cone 係 apex 道形成既最大既角 $\div 2$)

但呢個 parabola 又有d 咩特別?點解其他既 graph,比如 $y=x^4$ 既 graph 點解就唔係 parabola?

Figure 2: A figure showing the graph of $y=x^{4}$

咁我地就要 investigate 下 parabola 既 properties 喇!

Figure 3: A Figure showing the idea of the situation

係上面個圖道,$O$ 係 double cone 既 apex,$\Pi$ 就係一個同 vertical plane 形成既角同 semi-vertex angle 一樣既 plane,所以就可以 cut 成一條 parabola $p$,裡面既 sphere 就 armarm 好畫到同個 cone($\Pi$ 向住 $O$ 既 half plane 個邊)touch 而且亦同 $\Pi$ touch 係 point $F$ 既 plane,個 sphere 同個 double cone 既 intersection 係一個 circle $c$,而個 circle lie on 既 plane 我地叫佢做 $\Omega$ 

如果 $P$ 係 $p$ 上面既一個 moving point,而 $A$ 就係 $OP$ 同 $c$ 既 intersection,$B$ 係 $P$ 係 $\Omega$ 上面既 projection,$C$ 係 $P$ 係 $\Pi$ 同埋 $\Omega$ 既 intersecting line(denoted by $l$)上面既 projection

由我地係 3D solids 有關 projection 既知識話比我地聽,$\angle PBA = \angle PBC = 90^{\circ}$。

另外,$\angle PAB$ 同 $\angle PCB$ 都係 semi-vertex angle (by the definition of parabola),所以:

\begin{align*}
\angle PAB &= \angle PCB && \text{(proved)} \\
\angle PBA &= \angle PBC && \text{(proved)} \\
PB&=PB && \text{(common side)} \\
\triangle PAB &\cong \triangle PCB && \text{(A.A.S.)} \\
PA &= PC && \text{(corr. sides, ~}\triangle\text{s)}
\end{align*}

由我地既 tangent properties 可以知道 $PF=PA$,因此我地就知道 $PF=PC$,即即我地搵到 $\Pi$ (parabola $p$ 屬於既 plane)上面既一點 $F$ 同埋直線 $l$ 令到 parabola $p$ 上面既任何一點同 $F$ 以及同 $l$ equidistant,因此呢個就係 parabola 另一個 definition(當然實際上都要調轉再 prove 一次,但由於時間關係,你地都可以自己試下架):

A parabola is a curve such that there exists a point $F$ and a line $l$ such that every point $P$ lying on the parabola is equidistant to $F$ and to $l$.

咁呢句又點樣帶番落我地平時既 quadratic graph 道啊?咁我地就要用 locus 既方法喇!頭先上面個句正正就係 locus 既句子黎。所以我地就可以 let $P=(x,y)$ 先,而我地就想個 $l$ 係 horizontal,所以我地就 set $P=(a,b)$ 同埋 $y=k$,where $k\neq b$, $a$, $b$ and $k$ are real constants。

\begin{align*}
\sqrt{(x-a)^{2}+(y-b)^{2}}&=\sqrt{(x-x)^2+(y-k)^{2}} \\
(x-a)^{2}+(y-b)^{2}&=(y-k)^{2} \\
(2b-2k)y&=(x-a)^{2}+b^{2}-k^{2} \\
y&=\frac{1}{2b-2k}\left(x^{2}-2ax+a^{2}+b^{2}-k^{2}\right) && (\because k\neq b)
\end{align*}

咁我地就出到條 parabola 喇!!!

但…… 點解我地叫 parabola 做拋物線既?咁我地就要用下 F.4 上學期既 mechanics 喇!

係 projectile motion (當然係 without air resistance 啦) 裡面,如果一個 object 由 $(0,0)$ 呢個 point 開始擲出,initial velocity 係 $u$,inclination 係 $\theta$,咁我地就有 \[ \begin{cases} x = ut \cos\theta \\ y = ut \sin\theta - \frac{1}{2} gt^{2}\end{cases}.\]

由第一條 equation 可知,$t=\frac{x}{u\cos\theta}$,sub. 番落第二條式就見到 $y=x\tan\theta - \frac{gx^{2}}{2\cos ^{2}\theta}$,而因為 $g$、$u$ 同埋 $\theta$ 係拋左個 object 出去已經係 constant,所以 $y$ against $x$ 既 graph 就會係 parabola,所以 parabola 既中文名就係「拋物線」喇!


今日講到咁多,希望大家都會知道大家學緊既 parabola 其實係點黎啦~

2019年4月19日星期五

Maths Core / M1 / M2 Semi-mock Examination 7 for 2020 DSE

黎緊 5 月 26 日同埋 6 月 2 日就會舉行模擬考試喇!

Maths Core Mock:2019 年 5 月 26 日 08:45 - 13:00
M1 Mock:2019 年 6 月 2 日 08:45 - 11:30
M2 Mock:2019 年 6 月 2 日 08:45 - 11:30

試卷模式將會與 DSE 真卷一樣,不同的只是考試範圍。

模擬考試更設有多人、多科優惠!

在優悅教育報讀任何相應科目常規課程均可免費報考。
總科次 為 1:$150/科
總科次 為 2:$140/科
總科次 為 3 至 5:$120/科
總科次 為 6 至 10:$100/科
總科次 為 11 或以上:$80/科

【此費用已包括 試前練習、批改試卷、試卷詳解、整體表現報告 及 個人表現報告。】

即刻 click 入黎報名啦:



2019年4月9日星期二

2019 DSE Suggested Solutions

2019 DSE Maths 終於過左喇,如果大家想睇下答案都可以睇下以下既 suggested solutions 架!



【Updated on 28/4/2019】 當然唔少得 M1 同埋 M2 啦!


2019年4月5日星期五

2018 DSE Suggested Solutions

臨近 2019 DSE Maths 既大日子,等 Jacky Sir share 番 2018 DSE Maths 兩份卷既 suggested solution,等大家溫書用先~~~



順便比埋 2018 DSE M1 同埋 M2 既 suggested solution 比大家!


望大家都考到理想既 grade 啦!!!加油!!!

2019年4月3日星期三

DSE Further Mathematics Curriculum Proposal Part 3

Foundation Area 第三個 Topic 就係 The bionmial theorem。


Learning Unit 3 – The binomial theorem


Teaching time: 6 hours



Learning objective
Remarks
3.1  Expand binomials and trinomials with positive integral indices using the Binomial Theorem
Proving the Binomial Theorem is required.
The use of the summation notation should be introduced.
The expansion of trinomials and the properties of binomial coefficients are required are required.
Applications to numerical approximation, the greatest coefficient and the greatest term are not required.

呢個 Topic 既要求同舊制 Additional Mathematics 類似,但加入左 Deduction of properties of binomial coefficients,令學生可以更熟習 Summation、Differentiation 及 Integration 既用法,當然,涉及 Calculus 既部分會係之後教到既時候先會 subsume 入去相應既 topics 去教。


另外,加入 trinomial expansion 係因為想令學生唔會見到 (a + b + c)^n 就停左係道唔識 expand,而係可以用番學左既 binomial theorem 去解決,所以,引入呢一個部分係無可厚非既。



至於下一個 Topic 就係 More about rational functions。



Learning Unit 4 – More about rational functions


Teaching time: 4 hours


Learning objective
Remarks
4.1  Decompose rational functions into partial fractions
The maximum degree of the denominator is 4.
Application to infinite summation of rational functions is not required.
This learning unit can be taught in Learning Unit 11 – Indefinite integrals.

呢個 Topic 就係以前會考都冇既 Topic 黎,而因應 Integration 既要求,為使整個課程完整(只教不需經過 partial fractions 既 integration by substitution 同埋 integration by parts 既題目實在令本身 M2 既課程十分割裂!),以及增加學生在 Mathematics Compulsory Part 對 Rational functions 既認識(只需要認識 operations),此課程特意增加了此課題,以銜接 Mathematics Compulsory Part 與 Further Mathematics。


另外,由於為免冗長計算,此部分的分母的 degree 不會超過 4,而 factors 既種類只會係 linear factors 以及 quadratic factors,另亦可以有 repeating factors



下次講 proposal 既時候就到 Trigonometry 喇!大家記住要密切留意啊!

2019年3月9日星期六

掛羊頭賣狗肉?

琴日係 Instagram Story 道問左一條問題:


唔知各位同學識唔識計呢?

其實,題目既 expression 可以寫成 


而呢兩個 square root 正正就係 distance formula,代表某點 (x, y) 同 (0, 0) 之間既 distance 同埋 (x, y) 同 (5, -12) 之間既 distance 既總和。

所以呢題問題可以轉化成為 minimizing the sum of the distance of a point (x, y) to (0, 0) and to (5, -12)。我地畫番個圖就會見到以下既樣:


係個圖裡面,大家會見到 C 係 AB 上面既其中一點,所以 AD + BD AB (by triangle inequality) = AC + BC,所以無論 D 係成個 plane 既邊一個位置都好,(AD + BD) 都唔會短過 (AC + BC),所以堂 D 呢點移到去 C 既時候,(AD + BD) 就已經 minimize 左,所以個 minimum value 就係同 (AC + BC) 一樣,亦即 AB 既長度 13。

所以,Final answer 就係 13 喇!

P.S. 1:好似冇乜人答到啊,要繼續努力啊!!

P.S. 2:計到呢題既同學可以試下計呢題:Minimize [sqrt(x^2 + y^2) + sqrt(x^2 + y^2 - 10x + 24y + 169) + sqrt(x^2 + y^2 - 42x + 441)] ~~~

2019年3月4日星期一

DSE Further Mathematics Curriculum Proposal Part 2

今次我地就正式進入 Foundation Area 喇!

Foundation Area 既第一個 Topic 係 More about functions,內容主要係 M2 課程現時有既 Odd and even functions 同埋 CE Additional Mathematics 既 Absolute values 既部分。

Learning Unit 1 – More about functions


Teaching time: 5 hours

Learning objective
Remarks
1.1  Understand the concept of odd and even functions
1.2  Understand the definition of absolute values


1.3  Solve equations involving absolute values
1.4  Sketch simple graphs involving absolute values


The concept that |x - y| represents the distance between x and y should be introduced.

Examples include y = |x + 1| + 2, y = |x + 2| - |x| and y = x|x| + 2x.
Students also need to learn to sketch the graphs of y = f(|x|) and y = |f(x)| from the graph of y = f(x).

係現行既 M1 同埋 M2 既課程裡面,absolute values 只係會係 integration 突然出現,現後就會話「將所有負數變成正數」就得,但連 absolute values 本身既 formal definition 同 meaning 都唔知,咁樣之後遇上其他問題既時候(比如 Learning Unit 15 既 Analytic geometry 及 Algebra module 裡面 Learning Unit 18 既 Vectors)就會不知所措,所以係整個課程開首就加上關於 absolute values 既內容以令整個課程更為完整及更有系統。

不過,此 proposed syllabus 並未有包括有關 absolute values 既 inequalities,因為呢類 inequalities 同其他課既既內容未有太大關連。

Learning Unit 2 – The principle of Mathematical Induction

Teaching time: 5 hours


Learning objective
Remarks
2.1  Understand the principle of mathematical induction
Only the First Principle of Mathematical Induction is required.
Applications to proving propositions related to the summation of a finite sequence and inequalities are included.
Proving propositions involving divisibility is not required.

呢個部分同現行 M2 既課程相若,但加左有關 inequalities 既 statements,增加有關 proving statements related to inequalities 可以令同學對 inequalities 既了解加深(因為呢個世界好多時時候見到既都唔係等式),亦都可以增加有關 logic 既訓練(而亦不需要到達舊制 AL PMaths Inequalities 既難度),為日後既課題作好準備。

下次就到講兩個關於 Polynomials and rational functions 既 learning units - The binomial theorem 同埋 More about rational functions 喇!

2019年2月28日星期四

2019^228 有幾多個位?

好多同學見到條問題都會即刻嘗試去篤下 cal 機,睇下 2019^228 係幾多然後再數有幾多個位,但…… eh…… 點解會 Math ERROR 既?難道個數字係唔存在既?

拿,一個 integer 既 integral power 只係將某個數量既 integer 乘埋,即 2019^228 = 2019 × 2019 × 2019 × ... × 2019(228 個 2019 乘埋),呢個數就一定存在既!

但……點解計數機會出唔到個數字架?!

原來大家用既 cal 機最多只可以計到 100 個位(因為就算用埋 scientific notation 都係只可以 show 到去 10^99),超過 100 個位就會 Math ERROR 喇!

咁…… 入番正題,咁呢題點做啊?

好簡單,我地可以諗下 2019^228 寫成 scientific notation 既樣先:


Let 2019^228 = k × 10^n, where 1 ≤ k < 10 and n is an integer.

跟住點做好?面對咁大既數字,我地就可以搵下我地既好朋友—— log!兩邊 take log 後,我地用埋 property 拆開就會得到


228 log 2019 = log k + n


。跟住我地就會發現 0 ≤ log k < 1,既然 log k = 零點幾幾幾,n 又係 integer,我地由 2018 log 2019 ≈ 753.5710807 就會知道原來 n = 753。

咁係咪即係呢個數字就有 753 個位?咁我地就要諗清楚,平時我地寫 scientific notation 時,我地數 power 係數第一個位之後同小數點之間既 number of digits,所以我地調番轉係應該加番一個位比佢架!

所以 2019^228 就有 754 個位喇!!

如果大家下次想快d 搵到 a^b 既 number of digits 既(where a and b are positive integers),就可以直接將 b log a round down to integer 先,之後再加 1 就得架喇!

P.S. 點解我唔直接寫「將 b log a round up to integer

P.S. 大家又知唔知 2019P228 又有幾多個位呢?有讀 M1 既同學仔可以試下諗下架!


提提大家,下星期 2020 DSE Extended Star Capturing Course 就會開始教第五期,裡面就會教 log 係 DSE 裡面既唔同玩法喇!仲唔快d 報名

2020 DSE 距今不足 400 日,要奪星就要及早準備喇!!!

2019年2月22日星期五

DSE Further Mathematics Curriculum Proposal Part 1

之前 EDB 有提及過將現時既 M1 / M2 合併成為 Further Mathematics,但最後就擱置左,但 Jacky Sir 就多年都支持將課程十分割裂既 M1 / M2 合併成為一科,以下就係 Jacky Sir 計劃既 Further Mathematics Syllabus

首先,同其他 electives 一樣,Further Mathematics 都係分為 Compulsory Part 同埋 Elective Part,Compulsory Part 就會 focus on bridge from Maths Core 同埋高等數學既 foundation knowledge 同埋高等數學最重要既 calculus(就好似 M1 / M2 都有 calculus 咁),而 Elective Part 就係三揀一:


  • 第一個係 Algebra,呢個 elective part 同 M2 既 Algebra Part 一樣,不過主要多左 Complex numbers(而呢課亦係 EDB 早前提出既 Further Mathematics 課程一樣~)
  • 第二個係 Statistics,呢個 elective part 同 M1 既 Statistics Part 一樣,不過主要多左 Hypothesis testing
  • 第三個係 Decision Mathematics,呢個 elective part 就係新制及舊制均未出現,但現時香港重視 STEM,而 Decision Mathematics 既 skills 係處理唔同問題及 programming 都會好有用,所以作為新生代既課程,包括呢一個 elective part 係大勢所趨

詳細既 Learning units 及教學時數如下:


Foundation Knowledge Area
1.     More about functions
2.     The principle of mathematical induction
3.     The binomial theorem
4.     More about rational functions
5.     More about trigonometry
6.     More about exponential functions and logarithmic functions
7.     The polar coordinate system
Total

5
5
6
4
17
7
6
50
Calculus Area
8.     Limits and continuity
9.     Differentiation
10.  Applications of differentiation
11.  Indefinite integration
12.  Definite integration
13.  Numerical integration
14.  First-order differential equations
15.  Analytic geometry
Total

7
14
16
17
15
6
14
21
110
Elective Module 1 – Algebra Area
16.  Matrices and determinants
17.  Systems of linear equations
18.  Vectors
19.  Complex numbers
Total

13
6
34
22
75
Elective Module 2 – Statistics Area
20.  More about probabilities
21.  Discrete random variables and probability distributions
22.  The binomial, geometric and Poisson distributions
23.  Continuous random variables and probability distributions
24.  Sampling distribution and point estimates
25.  Confidence intervals and hypothesis testing
Total

6
8
20
22
7
12
75
Elective Module 3 – Decision Mathematics Area
26.  Divisibility, greatest common divisor and Diophantine equations
27.  Introduction to modular arithmetic
28.  Recurrence relations
29.  Introduction to algorithms
30.  Algorithms in graphs
31.  Introduction to game theory
Total

8
15
11
8
17
16
75
Inquiry and investigation
15
Total
250

之後既 posts 會再詳細講下每個 learning units 既內容架!密切留意!

大家有意見既話都可以同我講架!

Thanks for your attention!